Blind Channel Estimation for Space-Time Coded WCDMA
نویسندگان
چکیده
A new blind channel estimation technique is proposed for space-time coded wideband CDMA systems using aperiodic and possibly multirate spreading codes. Using a decorrelating front end, the received signal is projected onto a subspace from which channel parameters can be estimated up to a rotational ambiguity. Exploiting the subspace structure of the WCDMA signaling and the orthogonality of the unitary space-time codes, the proposed algorithm provides a blind channel estimate via least squares. A new identifiability condition is established under the assumption that the system is not heavily loaded. The mean square error of the estimated channel is compared with the Cramér-Rao bound, and the bit error rate (BER) performance of the proposed algorithm is compared with that of differential schemes.
منابع مشابه
Blind Vector Channel Estimation for Differentially Modulated Systems with Transmit Diversity
We consider vector channel estimation for differentially modulated systems with transmit diversity. We propose a blind estimation scheme to yield superior performance to that of the pilot-aided estimation. The proposed scheme utilizes the repeated transmission of space-time coded data symbols. We compare the performance of the proposed blind scheme with the pilot-based estimation scheme via com...
متن کاملBER Performance of Space-Time Coded MMSE DFE for Wideband Code Division Multiple Access (WCDMA)
In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique. The performance of WCDMA system is deteriorated in presence of multipath fading environment. The paper presents space-time coded minimum mean square error (MMSE) Decision Feedback...
متن کاملSemi-blind space-time chip equalizer receivers for WCDMA forward link with code-multiplexed pilot
In the forward link of WCDMA systems, the multipath propagation channel destroys the orthogonality of the spreading codes and therefore causes multi-user interference (MUI). In this paper, we propose new training-based and semi-blind space-time chip equalizer receivers for the forward link of WCDMA systems with a continuous code-multiplexed pilot. Both Least-Squares (LS) algorithms for block pr...
متن کاملSpace-Time Chip Equalization for WCDMA Forward Link with Code-Multiplexed Pilot and Soft Handover
In the forward link of WCDMA systems, multipath propagation destroys the orthogonality of the user signals and causes multi-user interference (MUI). Channel equalization can restore the orthogonality and suppress the MUI. However, adaptive implementations of the chip equalizer receiver that can track fast fading multipath channels are hard to realize in practice. On one hand, sending a training...
متن کاملBlind and semi-blind ML detection for space-time block-coded OFDM wireless systems
This paper investigates the joint maximum-likelihood (ML) data detection and channel estimation problem for space-time-block-coded (STBC) OFDM wireless systems with general constellation modulations. An efficient low-complexity algorithm is proposed based on recursive least squares (RLS) that renders exact ML estimates of both channel and the data. The wireless channel is assumed to be stationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004